Isolated aniridia caused by a novel PAX6 heterozygous large deletion mediated by multi-exon complex rearrangement

Aramis B. Torrefranca Jr.1 Suzanne Marie Carmona2,3 Alvina Pauline D. Santiago1 Michelle D. Lingao1 Eva Cutiongco-dela Paz2,3
1 Department of Ophthalmology and Visual Sciences, University of the Philippines – Philippine General Hospital
2 Institute of Human Genetics, National Institute of Health, University of the Philippines Manila
3 Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of the Philippines – Philippine General Hospital

Purpose: Mutations in PAX6 gene (chromosome 11p13) encoding a transcriptional regulator involved in oculogenesis mostly present with aniridia. Aniridia is not uncommon in the Philippines but only limited information is available as yet. The purpose of this study was to present a novel, large deletion mediated by complex rearrangement in PAX6 gene causing an isolated aniridia in a Filipino female.

Case Report: The patient is an 8-year-old female who underwent comprehensive ophthalmologic evaluation. Family history reveals presence of the aniridia and cataract with the mother and a sibling. Systemic work-up was performed including whole abdomen, renal ultrasound, blood chemistry and urinalysis. Targeted cataract panel with WT1 and PAX6 genes was performed to determine potential pathogenic mutations.

Results: The patient consulted due to blurring of vision bilaterally. Patient presented with subnormal vision, nystagmus, aniridia and cataractous lenses in both eyes. Patient underwent lens extraction without intraocular lens implantation bilaterally, where patient subsequently underwent intraocular lens implantation on her left eye. Repeat evaluation of posterior pole after cataract removal was unremarkable. Systemic evaluation was unremarkable. Molecular analysis revealed a novel, heterozygous PAX6-inherited mutation from the mother. This variant is a complex rearrangement in PAX6 involving partial deletions of exons 3-4 and part of exon 5, including the initiator codon. Deletions of PAX6 are part of a contiguous gene deletion syndrome: Wilms tumor, aniridia, genitourinary anomalies and intellectual disability (WAGR) syndrome, and therefore evaluation of the WT1 gene was necessary to rule out this life-threatening syndrome.

Conclusion: This study was able to report a rare, complex rearrangement of multiple exons and deletions in PAX6 causing an isolated aniridia phenotype. Patient was managed by a multidisciplinary team and the guardians were counseled regarding the prognosis and complications.